《Synthesis, docking study and inhibitory activity of 2,6-diketopiperazines derived from α-amino acids on HDAC8》 was published in Bioorganic Chemistry in 2020. These research results belong to Garrido Gonzalez, Flor Paulina; Mancilla Percino, Teresa. COA of Formula: C2H4BrNO The article mentions the following:
Diketopiperazines (DKPs) have been regarded as an important scaffold from the viewpoint of synthesis due to their biol. properties for the treatment of several diseases, including cancer. Two novel series of enantiomeric 2,6-DKPs derived from α-amino acids were synthesized through nucleophilic substitution and intramol. cyclization reactions. All the compounds were docked against histone deacetylase 8 (HDAC8), which was a promising target for the development of anticancer drugs. These compounds bound into the active site of HDAC8 in a similar way to Trichostatin A (TSA), which was an HDAC8 inhibitor. This study showed that the conformation of the 2,6-DKP ring, stereochem., and the type of substituent on the chiral center had an important role in the binding modes. The Gibbs free energies and dissociation constants values of HDAC8-ligand complexes showed that compounds (S)-4hBn, (S)-4m, (R)-4h, and (R)-4m were more stable and affine towards HDAC8 than TSA. The inhibitory activities of 4a, (S)-4h, (S)- and (R)-4(g, l, m) were evaluated in vitro on HDAC8. It was found that compounds (R)-4g (IC50 = 21.54 nM) and (R)-4m (IC50 = 10.81 nM) exhibited better inhibitory activities than TSA (IC50 = 28.32 nM). These results suggested that 2,6-DKPs derivatives may be promising anticancer agents for further biol. studies. The experimental part of the paper was very detailed, including the reaction process of 2-Bromoacetamide(cas: 683-57-8COA of Formula: C2H4BrNO)
2-Bromoacetamide(cas: 683-57-8) can be used in preparation of (2-carbamoylmethoxy-5-chloro-benzyl)-carbamic acid tert-butyl ester. It was aslo used as precursor to dehydropeptidase I inactivator.COA of Formula: C2H4BrNO
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics