In 2022,Hu, Jun; Qu, Jiajia; Deng, Lin; Dong, Huiyu; Jiang, Liying; Yu, Jianming; Yue, Siqing; Qian, Haifeng; Dai, Qizhou; Qiang, Zhimin published an article in Water Research. The title of the article was 《Metabonomic and transcriptomic modulations of HepG2 cells induced by the CuO-catalyzed formation of disinfection byproducts from biofilm extracellular polymeric substances in copper pipes》.Name: 2-Bromoacetamide The author mentioned the following in the article:
Cupric oxide (CuO) is able to catalyze the reactions among disinfectant, extracellular polymeric substances (EPS) and bromide (Br-) in copper pipes, which may deteriorate the water quality. This study aimed to investigate the metabonomic and transcriptomic modulations of HepG2 cells caused by the CuO-catalyzed formation of disinfection byproducts (DBPs) from EPS. The presence of CuO favored the substitution reactions of chlorine and bromine with EPS, inducing a higher content of total organic halogen (TOX). In addition, DBPs were shifted from chlorinated species to brominated species. A total of 182 differential metabolites (DMs) and 437 differentially expressed genes (DEGs) were identified, which were jointly involved in 38 KEGG pathways. Topol. anal. indicates that glycerophospholipid and purine metabolism were disturbed most obviously. During glycerophospholipid metabolism, the differential expression of genes GPATs, AGPATs, LPINs and DGKs impacted the conversion of glycerol-3-phosphate to 2-diacyl-sn-glycerol, which further affected the conversion among phosphatidylcholine, phosphatidylserine and phosphocholines. During purine metabolism, it was mainly the differential expression of genes POLRs, RPAs, RPBs, RPCs, ENTPDs and CDs that impacted the transformation of RNA into guanine-, xanthosine-, inosine- and adenosine monophosphate, which were further successively transformed into their corresponding nucleosides and purines. The study provides an omics perspective to assess the potential adverse effects of overall DBPs formed in copper pipes on human. In the experiment, the researchers used many compounds, for example, 2-Bromoacetamide(cas: 683-57-8Name: 2-Bromoacetamide)
2-Bromoacetamide(cas: 683-57-8) can be used in preparation of (2-carbamoylmethoxy-5-chloro-benzyl)-carbamic acid tert-butyl ester. It was aslo used as precursor to dehydropeptidase I inactivator.Name: 2-Bromoacetamide
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics