In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 120157-97-3 as follows. category: amides-buliding-blocks
Under nitrogen, compound X (from Example 38 part a) (5.0 g, 16.7 mmol) was mixed with toluene (80 mL) and 4-methoxy-3-phenylaniline hydrochloride (4.3 g, 18.3 mmol) was added to form a slurry. 2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl (1.6 g, 2.5 mmol) was added, followed by tris(dibenzylideneacetone)dipalladium(0) (760 mg, 0.83 mmol) and finally sodium tert-butoxide (5.3 g, 55 mmol). The mixture was heated at 90 C. for 150 min and then cooled to room temperature. Water (150 mL) was added followed by ethyl acetate (150 mL) and the phases partitioned. The aqueous layer was extracted with ethyl acetate (150 mL) and the combined organics washed three times with 0.5 M sodium bisulfate (200 mL), once with saturated sodium bicarbonate (150 mL) and twice with saturated sodium chloride (150 mL). The organics were dried over magnesium sulfate (50 g) and the volatiles removed under vacuum to give N-tert-butoxycarbonyl-2-[4-(3-[phenyl-4-methoxyphenyl)aminophenyl]ethylamine (LL) (8.4 g) which was used without further purification.
According to the analysis of related databases, 120157-97-3, the application of this compound in the production field has become more and more popular.
Reference:
Patent; Moran, Edmund J.; Jacobsen, John R.; Leadbetter, Michael R.; Nodwell, Matthew B.; Trapp, Sean G.; Aggen, James; Church, Timothy J.; US2003/229058; (2003); A1;,
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics