HFIP Mediates a Direct C-C Coupling between Michael Acceptors and Eschenmoser’s salt was written by Lemmerer, Miran;Riomet, Margaux;Meyrelles, Ricardo;Maryasin, Boris;Gonzalez, Leticia;Maulide, Nuno. And the article was included in Angewandte Chemie, International Edition in 2022.HPLC of Formula: 116332-61-7 This article mentions the following:
A direct C-C coupling process that merges Michael acceptors and Eschenmoser’s salt was presented. Although reminiscent of the Morita-Baylis-Hillman reaction, this process requires no Lewis base catalyst. The underlying mechanism was unveiled by a combination of kinetic, isotopic labeling experiments as well as computational investigations, which showcased the critical role of HFIP as a superior mediator for proton-transfer events as well as the decisive role of the halide counterion. In the experiment, the researchers used many compounds, for example, N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7HPLC of Formula: 116332-61-7).
N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.HPLC of Formula: 116332-61-7
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics