Du, Xiao’s team published research in Journal of Chemical Research in 2016 | CAS: 87694-50-6

(S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide(cas: 87694-50-6) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole.Safety of (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well.

Du, Xiao; Zhang, Hao-yang; Lei, Meng; Li, Zi-yuan; Zhu, Yong-qiang published their research in Journal of Chemical Research on February 29 ,2016. The article was titled 《An efficient preparation of novel epoxyketone intermediates for the synthesis of carfilzomib and its derivatives》.Safety of (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide The article contains the following contents:

A novel and efficient preparation of epoxyketone intermediates for the synthesis of carfilzomib and its derivatives was developed. Compared to reported methods, this highly stereoselective, environmentally friendly, low-cost method can be used in scaling up the synthesis of carfilzomib and its derivatives In addition to this study using (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide, there are many other studies that have used (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide(cas: 87694-50-6Safety of (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide) was used in this study.

(S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide(cas: 87694-50-6) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole.Safety of (S)-N-Methyl-N-methoxy-2-(tert-butoxycarbonylamino)-4-methylpentanamide The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well.

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics