Hankore, Erome Daniel’s team published research in ACS Synthetic Biology in 2019 | CAS: 2418-95-3

H-Lys(Boc)-OH(cas: 2418-95-3) belongs to amino acids. Amino acids are not generally considered to be electrochemically active because products of the oxidation accumulate on the electrode surface and prevent it from participating in any further electrochemical processes.Reference of H-Lys(Boc)-OH

Reference of H-Lys(Boc)-OHOn May 17, 2019 ,《Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons》 appeared in ACS Synthetic Biology. The author of the article were Hankore, Erome Daniel; Zhang, Linyi; Chen, Yan; Liu, Kun; Niu, Wei; Guo, Jiantao. The article conveys some information:

Genetic incorporation of noncanonical amino acids has emerged as a powerful tool for the study of protein structure and function. While the three triplet nonsense codons have been widely explored, quadruplet codons have attracted attention for the potential of creating addnl. blank codons for noncanonical amino acid mutagenesis. Here we demonstrated for the first time that two orthogonal quadruplet codons could be used to simultaneously encode two different noncanonical amino acids within a single protein in bacterial cells. To achieve this, we fine-tuned the interaction between aminoacyl-tRNA synthetase and tRNA, which afforded up to 21-fold improvement in quadruplet codon decoding efficiency. This work represents a significant step toward the use of multiple quadruplet codons for noncanonical amino acid mutagenesis. Simultaneous incorporation of two or more noncanonical amino acids is of significant importance for biol. applications that can benefit from multiple unique functional groups, such as fluorescence resonance energy transfer and NMR studies, and ultimately for the synthesis of completely unnatural biopolymers as new biomaterials. After reading the article, we found that the author used H-Lys(Boc)-OH(cas: 2418-95-3Reference of H-Lys(Boc)-OH)

H-Lys(Boc)-OH(cas: 2418-95-3) belongs to amino acids. Amino acids are not generally considered to be electrochemically active because products of the oxidation accumulate on the electrode surface and prevent it from participating in any further electrochemical processes.Reference of H-Lys(Boc)-OH

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics