The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 84358-13-4, Name is Boc-Inp-OH, SMILES is CC(OC(N1CCC(C(O)=O)CC1)=O)(C)C, in an article , author is Yang, Rui, once mentioned of 84358-13-4, Computed Properties of https://www.ambeed.com/products/84358-13-4.html.
The use of pincer ligands to access non-VSEPR geometries at main-group centers is an emerging strategy for eliciting new stoichiometric and catalytic reactivity. As part of this effort, several different tridentate trianionic substituents have to date been employed at a range of different central elements, providing a patchwork dataset that precludes rigorous structure-function correlation. An analysis of periodic trends in structure (solid, solution, and computation), bonding, and reactivity based on systematic variation of the central element (P, As, Sb, or Bi) with retention of a single tridentate triamide substituent is reported herein. In this homologous series, the central element can adopt either a bent or planar geometry. The tendency to adopt planar geometries increases descending the group with the phosphorus triamide (1) and its arsenic congener (2) exhibiting bent conformations, and the antimony (3) and bismuth (4) analogues exhibiting a predominantly planar structure in solution. This trend has been rationalized using an energy decomposition analysis. A rare phase-dependent dynamic covalent dimerization was observed for 3 and the associated thermodynamic parameters were established quantitatively. Planar geometries were found to engender lower LUMO energies and smaller band gaps than bent ones, resulting in different reactivity patterns. These results provide a benchmark dataset to guide further research in this rapidly emerging area.
Interested yet? Read on for other articles about 84358-13-4, you can contact me at any time and look forward to more communication. Computed Properties of https://www.ambeed.com/products/84358-13-4.html.
Reference:
Amide – Wikipedia,
,Amide – an overview | ScienceDirect Topics