(2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow was written by Harenberg, Johannes H.;Weidmann, Niels;Wiegand, Alexander J.;Hoefer, Carla A.;Annapureddy, Rajasekar Reddy;Knochel, Paul. And the article was included in Angewandte Chemie, International Edition in 2021.Electric Literature of C10H10F3NO2 This article mentions the following:
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a min. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported. In the experiment, the researchers used many compounds, for example, N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7Electric Literature of C10H10F3NO2).
N-Methoxy-N-methyl-4-(trifluoromethyl)benzamide (cas: 116332-61-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Electric Literature of C10H10F3NO2
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics