Bauer, Adriano et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 192436-83-2

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide

An α-Cyclopropanation of Carbonyl Derivatives by Oxidative Umpolung was written by Bauer, Adriano;Di Mauro, Giovanni;Li, Jing;Maulide, Nuno. And the article was included in Angewandte Chemie, International Edition in 2020.Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide This article mentions the following:

The reactivity of iodine(III) reagents towards nucleophiles is often associated with umpolung and cationic mechanisms. Herein, we report a general process converting a range of ketone derivatives into α-cyclopropanated ketones by oxidative umpolung [e.g., III (71%, d.r. > 95:5) + III (8%, d.r. > 95:5) in presence of PhIO.MsOH and BF3.OEt2]. Mechanistic investigation and careful characterization of side products revealed that the reaction follows an unexpected pathway and suggests the intermediacy of non-classical carbocations. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide).

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics