Rapid access to diverse, trifluoromethyl-substituted alkenes using complementary strategies was written by Phelan, James P.;Wiles, Rebecca J.;Lang, Simon B.;Kelly, Christopher B.;Molander, Gary A.. And the article was included in Chemical Science in 2018.Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide This article mentions the following:
Two synergistic approaches to the facile assembly of complex α-trifluoromethyl alkenes are described. Using α-trifluoromethyl-β-silyl alcs. as masked trifluoromethyl alkenes, cross-coupling or related functionalization processes at distal electrophilic sites can be executed without inducing Peterson elimination. Subsequent Lewis acidic activation affords functionalized α-trifluoromethyl alkenes. Likewise, the development of a novel α-trifluoromethylvinyl trifluoroborate reagent complements this approach and allows a one-step cross-coupling of (hetero)aryl halides to access a broad array of complex α-trifluoromethyl alkenes. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide).
4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Application In Synthesis of 4-Bromo-N-methoxy-N-methylbenzamide
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics