One-Pot Trifluoromethylative Functionalization of Amides: Synthesis of Trifluoromethylated Bis(indolyl)arylmethanes and Triarylmethanes was written by Pandey, Vinay Kumar;Anbarasan, Pazhamalai. And the article was included in Journal of Organic Chemistry in 2017.Category: amides-buliding-blocks This article mentions the following:
Efficient and general one-pot trifluoromethylative functionalization of amides has been accomplished for the synthesis of various trifluoromethylated bis(indolyl)arylmethane, utilizing trifluoromethyltrimethylsilane and substituted indoles as nucleophiles. The developed reaction involves the in situ generation and trapping of a trifluoromethylated iminium ion, derived from the trifluoromethylated hemiaminal of amide, with various substituted indoles. This method has been successfully extended to the synthesis of diverse trifluoromethylated triarylmethanes employing phenols as nucleophiles. Furthermore, the potential of the method was demonstrated via the two-step synthesis of a trifluoromethylated analog of a hypolipidemic and anti-obesity agent. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Category: amides-buliding-blocks).
4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Category: amides-buliding-blocks
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics