Wu, Yueming’s team published research in Nature Communications in 9 | CAS: 2418-95-3

Nature Communications published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C10H18O, Application of H-Lys(Boc)-OH.

Wu, Yueming published the artcileLithium hexamethyldisilazide initiated superfast ring opening polymerization of alpha-amino acid N-carboxyanhydrides, Application of H-Lys(Boc)-OH, the publication is Nature Communications (2018), 9(1), 5297, database is CAplus and MEDLINE.

Polypeptides have broad applications and can be prepared via ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). Conventional initiators, such as primary amines, give slow NCA polymerization, which requires multiple days to reach completion and can result in substantial side reactions, especially for very reactive NCAs. Moreover, current NCA polymerizations are very sensitive to moisture and must typically be conducted in a glove box. Here we show that lithium hexamethyldisilazide (LiHMDS) initiates an extremely rapid NCA polymerization process that is completed within minutes or hours and can be conducted in an open vessel. Polypeptides with variable chain length (DP = 20-1294) and narrow mol. weight distribution (Mw/Mn = 1.08-1.28) were readily prepared with this approach. Mechanistic studies support an anionic ring opening polymerization mechanism. This living NCA polymerization method allowed rapid synthesis of polypeptide libraries for high-throughput functional screening.

Nature Communications published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C10H18O, Application of H-Lys(Boc)-OH.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics