Geranio, L. et al. published their research in Environmental Science & Technology in 2009 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.COA of Formula: C10H16N2O4

The Behavior of Silver Nanotextiles during Washing was written by Geranio, L.;Heuberger, M.;Nowack, B.. And the article was included in Environmental Science & Technology in 2009.COA of Formula: C10H16N2O4 This article mentions the following:

The widespread use of silver nanoparticles (Ag-NPs) in com. products, especially textiles, will likely result in an unknown spread of Ag into the environment. The quantification and characterization of the Ag released from nano-Ag-products is an important parameter needed to predict the effect of Ag-NPs on the environment. The aim of this study was to determine the amount and the form of Ag released during washing from nine fabrics with different ways of silver incorporation into or onto the fibers. The effect of pH, surfactants, and oxidizing agents was evaluated. The results show that little dissolution of Ag-NPs occurs under conditions relevant to washing (pH 10) with dissolved concentrations 10 times lower than at pH 7. However, bleaching agents such as hydrogen peroxide or peracetic acid (formed by the perborate/TAED system) can greatly accelerate the dissolution of Ag. The amount and form of Ag released from the fabrics as ionic and particulate Ag depended on the type of Ag-incorporation into the textile. The percentage of the total silver emitted during one washing of the textiles varied considerably among products (from less than 1 to 45%). In the washing machine the majority of the Ag (at least 50% but mostly >75%) was released in the size fraction >450 nm, indicating the dominant role of mech. stress. A conventional silver textile did not show any significant difference in the size distribution of the released silver compared to many of the textiles containing nano-Ag. These results have important implications for the risk assessment of Ag-textiles and also for environmental fate studies of nano-Ag, because they show that under conditions relevant to washing, primarily coarse Ag-containing particles are released. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4COA of Formula: C10H16N2O4).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.COA of Formula: C10H16N2O4

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

de Oliveira, Alisson Macario et al. published their research in Chemistry & Biodiversity in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application of 10238-21-8

Flavonoid-Rich Fraction from Croton blanchetianus (Euphorbiaceae) Leaves Exerts Peripheral and Central Analgesic Effects by Acting via the Opioid and Cholinergic Systems was written by de Oliveira, Alisson Macario;Widmer, Ramona;do Nascimento, Matheus Ferreira;Costa, Wendeo Kennedy;Paiva, Patricia Maria Guedes;Napoleao, Thiago Henrique. And the article was included in Chemistry & Biodiversity in 2022.Application of 10238-21-8 This article mentions the following:

The ethanolic extract from Croton blanchetianus leaves has been shown to have antinociceptive activity in mice. Here, we investigated the antinociceptive activity of an Et acetate fraction (EAF) from this extract in mice and the possible pathways involved in the analgesic effect. Adverse effects on behavior and motor coordination were also evaluated. The EAF was characterized by liquid chromatog. coupled with mass spectrometry and evaluated (12.5, 25, and 50 mg/kg per os) in the acetic acid-induced abdominal writhing, formalin, hot plate, and tail immersion assays. Naloxone, atropine, glibenclamide, prazosin, or yohimbine was pre-administered to mice to investigate the involved pathways in the formalin test. The open-field, rotarod, and elevated plus-maze tests were used to assess behavior and locomotion. The main components of the EAF were quercetin-3-O-(2-rhamnosyl) rutinoside, hyperoside, quercetin rutinoside pentoside, and quercetin hexoside deoxyhexoside. EAF showed antinociceptive effects in all models and was effective against both neurogenic and inflammatory pain. The reversion of the effects in the formalin test by naloxone and atropine revealed that the EAF acted via the opioid and cholinergic systems. In the open-field test, the behavior of the animals treated with the EAF was like that of control, except at the highest dose, when hypnosis, eyelid ptosis, decreased walking, hygiene, and rearing behaviors were observed No muscle relaxant effect was observed, but an anxiogenic effect was observed at all doses. This study provides new scientific evidence on the pharmacol. properties of C. blanchetianus leaves and their potential for the development of phytomedicines with analgesic properties. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Application of 10238-21-8).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application of 10238-21-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Xue, Danwei et al. published their research in Paper and Biomaterials in 2021 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.HPLC of Formula: 2387-23-7

Synthesis of reprocessable lignin-based non-isocyanate poly(imine-hydroxyurethane)s networks was written by Xue, Danwei;Xue, Bailiang;Tang, Rui;Shen, Chao;Li, Xinping;Zhao, Wei. And the article was included in Paper and Biomaterials in 2021.HPLC of Formula: 2387-23-7 This article mentions the following:

In this study, an environmentally friendly and non-toxic route to synthesize lignin-based non-isocyanate poly(imine-hydroxyurethane)s networks was explored. Specifically, the NH2-terminated polyhydroxyurethanes (NPHUs) prepolymer was first synthesized from bis(6-membered cyclic carbonate) (BCC) and diamine via the ring-opening reaction. Subsequently, the corresponding lignin based non-isocyanate polyurethanes (NIPUs) with tunable properties were synthesized from NPHUs and levulinate lignin derivatives containing ketone groups via the Schiff base reaction. The structural, mech., and thermal properties of NIPUs with different stoichiometric feed ratios of BCC and levulinate lignin were characterized by Fourier transform IR spectroscopy, NMR, differential scanning calorimetry, dynamic mech. anal., and thermogravimetric anal.. The results indicated that the tensile strength, Young’s modulus, toughness, storage modulus, glass transition temperature, and thermal stability of lignin-based NIPUs gradually increased with increasing lignin content, and the highest Young’s modulus of 41.1 MPa was obtained when lignin content reached 45.53%. With good reprocessing properties, this synthetic framework of lignin-based NIPUs also provides sustainable non-isocyanate-based substitutions to traditional polyurethane networks. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7HPLC of Formula: 2387-23-7).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.HPLC of Formula: 2387-23-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zhang, Yinsheng et al. published their research in Journal of Labelled Compounds & Radiopharmaceuticals in 2002 | CAS: 61189-99-9

2,2-Diethoxyacetamide (cas: 61189-99-9) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Name: 2,2-Diethoxyacetamide

Syntheses of stable-isotope labeled [M + 7] and [M + 6] 2-(methylamino)imidazole was written by Zhang, Yinsheng. And the article was included in Journal of Labelled Compounds & Radiopharmaceuticals in 2002.Name: 2,2-Diethoxyacetamide This article mentions the following:

Stable isotope-labeled 2-(methylamino)imidazole (M + 7 and M + 6) was required as an intermediate in the synthesis of mass labeled drug candidates. These two isotopomers were synthesized with total yields of 24 and 36%, resp. Labeled 2-aminoimidazole (M + 4) was prepared from labeled isothiourea (M + 3) and 2-aminoacetaldehyde di-Me acetal (M + 1 and M + 2). The (M + 1) version of 2-aminoacetaldehyde di-Me acetal was obtained in two steps starting with potassium [15N]phthalimide, while the (M + 2) version was prepared from the reduction of diethoxyacetamide with LiAlD4. Two different approaches for the preparation of 2-(methylamino)imidazole from 2-aminoimidazole were explored. Attempts to prepare protected 2-aminoimidazole to couple with CH3I (M + 4) to form the desired labeled 2-(methylamino)imidazole failed. However, methylation was achieved by applying N-formamidation followed by deutero-reduction These successful syntheses allowed us to selectively label with nitrogen, carbon or hydrogen isotopes at most of the positions of 2-(methylamino)imidazole. In the experiment, the researchers used many compounds, for example, 2,2-Diethoxyacetamide (cas: 61189-99-9Name: 2,2-Diethoxyacetamide).

2,2-Diethoxyacetamide (cas: 61189-99-9) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Name: 2,2-Diethoxyacetamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Capilato, Joseph N. et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 192436-83-2

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.COA of Formula: C9H10BrNO2

Acetyl nitrate mediated conversion of methyl ketones to diverse carboxylic acid derivatives was written by Capilato, Joseph N.;Pellegrinelli, Peter J.;Bernard, Josephine;Schnorbus, Logan;Philippi, Shane;Mattiucci, Joseph;Hoy, Erik P.;Perez, Lark J.. And the article was included in Organic & Biomolecular Chemistry in 2021.COA of Formula: C9H10BrNO2 This article mentions the following:

The development of a novel acetyl nitrate mediated oxidative conversion of Me ketones to carboxylic acid derivatives is described. By analogy to the haloform reaction and supported by exptl. and computational investigation authors propose a mechanism for this transformation. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2COA of Formula: C9H10BrNO2).

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.COA of Formula: C9H10BrNO2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Granado, M. et al. published their research in Journal of Ethnopharmacology in 2022 | CAS: 10238-21-8

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Recommanded Product: 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide

Marjoram extract prevents ischemia reperfusion-induced myocardial damage and exerts anti-contractile effects in aorta segments of male wistar rats was written by Granado, M.;Gonzalez-Hedstrom, D.;Amor, S.;Fajardo-Vidal, A.;Villalva, M.;de la Fuente-Fernandez, M.;Tejera-Munoz, A.;Jaime, L.;Santoyo, S.;Garcia-Villalon, A. L.. And the article was included in Journal of Ethnopharmacology in 2022.Recommanded Product: 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide This article mentions the following:

Marjoram (Origanum majorana L.) is an herb traditionally used as a medicine in different countries, as Morocco and Iran, because of its beneficial cardiovascular effects. Some studies suggest that these effects are due, at least in part, to the presence of phenolic compounds such as rosmarinic acid (RA) and luteolin. To analyze the possible cardiprotective effects of a marjoram extract (ME) reducing myocardial damage after coronary ischemia-reperfusion (IR) and its possible antihypertensive effects reducing the response of aorta segments to the vasoconstrictors noradrenaline (NA) and endothelin-1 (ET-1). Male Wistar rats (300g) were used. After sacrifice, the heart was immediately removed and mounted in a perfusion system (Langendorff). The aorta was carefully dissected and cut in 2 mm segments to perform vascular reactivity experiments In the heart, ME perfusion after IR reduced heart rate and prevented IR-induced decrease of cardiac contractility, possibly through vasodilation of coronary arteries and through the upregulation of antioxidant markers in the myocardium that led to reduced apoptosis of cardiomyocytes. In the aorta, ME decreased the vasoconstrictor response to NA and ET-1 and exerted a potent anti-inflammatory and antioxidant effect. Neither RA nor 6-hydroxi-luteolin-O-glucoside, major compounds of this ME, were effective in improving cardiac contractility after IR or attenuating vasoconstriction to NA and ET-1 in aorta segments. In conclusion, ME reduces the myocardial damage induced by IR and the contractile response to vasoconstrictors in the aorta. Thus, it may be useful for the treatment of cardiovascular diseases such as myocardial infarction and hypertension. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8Recommanded Product: 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide).

5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. Amides are stable compounds. The lower-melting members (such as acetamide) can be readily purified by fractional distillation. Most amides are solids which have low solubilities in water.Recommanded Product: 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Luo, Deng-hong et al. published their research in Yinran in 2010 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.COA of Formula: C10H16N2O4

Homogeneously catalytic ozone decolorization of reactive dyeing effluents was written by Luo, Deng-hong;Zheng, Qing-kang;Su, Shi;Chen, Song;Pu, Zong-Yao;Gao, Dian-quan. And the article was included in Yinran in 2010.COA of Formula: C10H16N2O4 This article mentions the following:

Synergistic action of homogeneous activator tetraacetylethylenediamine (TAED) on ozone decolorization of reactive dyes was studied. Influences of ozone airflow, TAED concentration, pH value and reaction time on decoloration rate and CODCr value were investigated. The results showed that activator TAED could enhance ozone decolorization action, improve decoloration rate and removal of CODCr shorten reaction time by activating ozone to produce peracetic acid and reduce surface tension of the solution In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4COA of Formula: C10H16N2O4).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.COA of Formula: C10H16N2O4

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

O’Brien, Alexander G. et al. published their research in Organic Process Research & Development in 2018 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.COA of Formula: C13H24N2O

Dehydration of an Insoluble Urea Byproduct Enables the Condensation of DCC and Malonic Acid in Flow was written by O’Brien, Alexander G.;Ricci, Eric M.;Journet, Michel. And the article was included in Organic Process Research & Development in 2018.COA of Formula: C13H24N2O This article mentions the following:

A procedure for the preparation of N,N’-dicyclohexylbarbituric acid from DCC and malonic acid is described. Addition of phosphorus oxychloride to the reaction mixture facilitates dehydration of the insoluble byproduct N,N’-dicyclohexyl urea, enabling operation in continuous flow. A development approach based on in situ monitoring of batch reactions was used, which supported screening and determination of reaction conditions at small scale prior to scaleup in flow. Addnl. mechanistic understanding and control of impurity formation are presented. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7COA of Formula: C13H24N2O).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.COA of Formula: C13H24N2O

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Zhao, Zheng et al. published their research in Yinran in 2011 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 10543-57-4

Activated low temperature bleaching of cotton fabric with glucose oxidase was written by Zhao, Zheng;Chen, Ting-Chun;Zhu, Quan;Zhu, Li-Min. And the article was included in Yinran in 2011.Related Products of 10543-57-4 This article mentions the following:

In low-temperature bleaching of cotton fabric with glucose oxidase, the decomposition of H2O2 is only about 50%, so activator TAED is introduced into the bleaching system. The optimal process of activated low-temperature bleaching is: pH value 7.0, n(TAED):n(H2O2) 0.5:1, bleaching at 70 °C for 60 min, bath ratio 10:1, and sodium pyrophosphate 2g/L. Decomposition rate of H2O2 is above 98% in the activated low temperature bleaching system. The whiteness of the fabric bleached in the activated low temperature process is lower than that in the traditional process. Compared with traditional bleaching process, low temperature bleaching with glucose oxidase has lower damage and less strength loss to fibers. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4Related Products of 10543-57-4).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well. Thus amides can participate in hydrogen bonding with water and other protic solvents; the oxygen atom can accept hydrogen bonds from water and the N–H hydrogen atoms can donate H-bonds. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Related Products of 10543-57-4

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Cui, Pei et al. published their research in Burns : journal of the International Society for Burn Injuries in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 53902-12-8

In vitro and vivo study of tranilast protects from acute respiratory distress syndrome and early pulmonary fibrosis induced by smoke inhalation. was written by Cui, Pei;Tang, Zhiping;Zhan, Qiu;Deng, Chunjiang;Lai, Yanhua;Zhu, Fujun;Xin, Haiming;Li, Rongsheng;Chen, Anning;Tong, Yalin. And the article was included in Burns : journal of the International Society for Burn Injuries in 2022.Related Products of 53902-12-8 This article mentions the following:

BACKGROUND: Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. It was identified with anti-inflammatory and antifibrotic activities, and used in the treatment of a variety of diseases, such as anti – allergy, bronchial asthma, and hypertrophic scars. As a drug with few adverse reactions, tranilast has attracted great attention, but its application is limited due to the uncertainty of dosages and mechanisms. In this study, the protection effects of different doses of tranilast on smoke inhalation mediated lung injury on rats, and on the damage of three kinds of lung cells in vitro were investigated. METHOD: In vivo, Sprague-Dawley rats were randomly divided into sham group, smoke group (rats were exposed to pine sawdust smoke three times, each time for 5 min), different doses of tranilast treatment group (doses were 100 mg/kg, 200 mg/kg and 300 mg/kg, ip.) and placebo group. After 1, 3 and 7 days, pulmonary function, pathologic injury by HE staining, cytokines and oxidative stress level by kits were determined. At 7days, lung fibrosis was assessed by Masson’s trichrome staining and the level of hydroxyproline (HYP). In vitro, three kinds of lung cells from normal rats were isolated: type II alveolar epithelial cells (AT-II), pulmonary microvascular endothelial cells (PMVECs) and pulmonary fibroblasts (PFs). To investigate the potential effects of tranilast on cell proliferation, cell cycle and cytokine production of three kinds of lung cells exposed to smoke. RESULTS: Compared with smoke group and placebo group, tranilast treatment significantly reduced histopathological changes (such as pulmonary hemorrhage, edema and inflammatory cell infiltration, etc.), significantly reduced histopathological score (p < 0.05), increased arterial oxygen partial pressure, and decreased the levels of IL-1β, TNF-α, TGF-β1 (p < 0.05), oxidative stress and the expression of nuclear transcription factor κB (NF-κB) smoke exposed rats (p < 0.01). In particular, the effect of 200 mg/kg dose was more prominent. In vitro, smoke induced AT-II and PMVECs apoptosis, improved PFs proliferation (p < 0.01), activity of SOD and decreased the content of MDA (p < 0.01). However, tranilast seems to be turning this trend well. The inflammatory factor IL-11β, TNF-α and TGF-β1, and the expression of NF-κB were significantly lower in the tranilast treatment than in the smoke group (p < 0.01). CONCLUSION: This study indicates that tranilast had a protective effect on acute respiratory distress syndrome and early pulmonary fibrosis of rats in vivo. In addition, tranilast promotes proliferation of AT-II and PMVECs but inhibits PFs proliferation, down-regulates secretion of inflammatory cytokines and alleviates oxidative stress of AT-II, PMVECs and PFs after smoke stimuli in vitro. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Related Products of 53902-12-8).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Related Products of 53902-12-8

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics