Repositioning of the Anthelmintic Drugs Bithionol and Triclabendazole as Transthyretin Amyloidogenesis Inhibitors was written by Yokoyama, Takeshi;Kashihara, Mirai;Mizuguchi, Mineyuki. And the article was included in Journal of Medicinal Chemistry in 2021.Formula: C18H17NO5 This article mentions the following:
Transthyretin (TTR) is a causative protein of TTR amyloidosis (ATTR amyloidosis), a general term for diseases characterized by deposition of TTR amyloid fibrils in specific organs. ATTR amyloidosis can be ameliorated by stabilization of the TTR tetramer through the binding of small mols. Here, we show that the clin. anthelmintic drugs bithionol (42) and triclabendazole (43) potently inhibit aggregation of the amyloidogenic variant V30M-TTR. A competitive binding assay using a fluorescence probe showed that the binding affinity of 42 with V30M-TTR was significantly higher than that of the first-in-class drug tafamidis (1), and the binding affinity of 43 was similar to that of 1. The crystallog. and thermodn. anal. revealed that 42 efficiently occupied the halogen-binding grooves of TTR, resulting in the favorable binding entropy. Multifaceted in vitro studies of anthelmintic drugs have the potential to reposition these drugs as ATTR amyloidosis inhibitors. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Formula: C18H17NO5).
2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C18H17NO5
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics