C-H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes was written by Massignan, Leonardo;Tan, Xuefeng;Meyer, Tjark H.;Kuniyil, Rositha;Messinis, Antonis M.;Ackermann, Lutz. And the article was included in Angewandte Chemie, International Edition in 2020.COA of Formula: C9H10BrNO2 This article mentions the following:
The catalytic generation of hypervalent iodine(III) reagents by anodic electrooxidation was orchestrated towards an unprecedented electrocatalytic C-H oxygenation of weakly coordinating aromatic amides and ketones. Thus, catalytic quantities of iodoarenes in concert with catalytic amounts of ruthenium(II) complexes set the stage for versatile C-H activations with ample scope and high functional group tolerance. Detailed mechanistic studies by experiment and computation substantiate the role of the iodoarene as the electrochem. relevant species towards C-H oxygenations with electricity as a sustainable oxidant and mol. hydrogen as the sole byproduct. Para-Selective C-H oxygenations likewise proved viable in the absence of directing groups. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2COA of Formula: C9H10BrNO2).
4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.COA of Formula: C9H10BrNO2
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics