Colella, Marco et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 192436-83-2

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Reference of 192436-83-2

Fluoro-Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors was written by Colella, Marco;Tota, Arianna;Takahashi, Yusuke;Higuma, Ryosuke;Ishikawa, Susumu;Degennaro, Leonardo;Luisi, Renzo;Nagaki, Aiichiro. And the article was included in Angewandte Chemie, International Edition in 2020.Reference of 192436-83-2 This article mentions the following:

The external quenching method based on flow microreactors allows the generation and use of short-lived fluoro-substituted methyllithium reagents, such as fluoromethyllithium, fluoroiodomethyllithium, and fluoroiodostannylmethyllithium. Highly chemoselective reactions were developed, opening new opportunities in the synthesis of fluorinated mols. using fluorinated organometallics. In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Reference of 192436-83-2).

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Reference of 192436-83-2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics