Baruffini, A. et al. published their research in Farmaco, Edizione Scientifica in 1971 | CAS: 2670-38-4

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Recommanded Product: 3,4-Dichlorobenzamide

Phytotoxicity and selectivity of action of a homologous series of N-alkyl- and N,N-dialkyl-3,4-dichlorobenzamides was written by Baruffini, A.;Pagani, G.;Caccialanza, G.;Gialdi, F.. And the article was included in Farmaco, Edizione Scientifica in 1971.Recommanded Product: 3,4-Dichlorobenzamide This article mentions the following:

Of the 45 N-alkyl- and N,N-dialkyl-3,4-dichlorobenzamides (I) prepared by usual methods and tested for pre- and post-emergence phytotoxicity against common weeds, N,N-di-sec-butyl-3,4-dichlorobenzamide (6 kg/ha) selectively inhibited the growth of Echinochloa crus-galli and Setaria glauca. Most compounds were inactive in pre-emergence tests, while in the post-emergence tests some activity was shown by N-sec-amyl-3,4-dichlorobenzamide, N-sec-butyl-3,4-dichlorobenzamide, and 3,4-dichloro-N-ethylbenzamide. The N-monoalkyl-3,4-dichlorobenzamides generally showed limited action only through foliar absorption, while the more active N-dialkyl-3,4-dichlorobenzamides were absorbed through both leaves and roots. In both cases, the degree of absorption and activity is related to the structure of the alkyl residue on the N, particularly in the case of the dialkyl compounds In the experiment, the researchers used many compounds, for example, 3,4-Dichlorobenzamide (cas: 2670-38-4Recommanded Product: 3,4-Dichlorobenzamide).

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Ionic, or saltlike, amides are strongly alkaline compounds ordinarily made by treating ammonia, an amine, or a covalent amide with a reactive metal such as sodium.Recommanded Product: 3,4-Dichlorobenzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Blickenstaff, Robert T. et al. published their research in Bioorganic & Medicinal Chemistry in 1994 | CAS: 2670-38-4

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Category: amides-buliding-blocks

Potential radioprotective agents-V. Melatonin analogs. Oral activity of p-aminopropiophenone and its ethylene ketal was written by Blickenstaff, Robert T.;Reddy, Shailaja;Witt, Robert. And the article was included in Bioorganic & Medicinal Chemistry in 1994.Category: amides-buliding-blocks This article mentions the following:

Seven new amides of 5-methoxytryptamine were synthesized and tested for radioprotective activity in mice. One of them, the heptafluorobutyramide 4, is moderately active (57% survivors); the rest demonstrate little or no activity. Of twelve compounds that had been found to exhibit high radioprotective activity by i.p. injection, only two [p-aminopropiophenone (9) and its ethylene ketal 8] retain that high activity (92-95% survivors) when administered orally. Three are moderately active: p-aminobenzonitrile (10, 55%), 5-methoxytryptamine octanoic amide (11, 50%), and p-aminobenzophenone (12, 48%). In the experiment, the researchers used many compounds, for example, 3,4-Dichlorobenzamide (cas: 2670-38-4Category: amides-buliding-blocks).

3,4-Dichlorobenzamide (cas: 2670-38-4) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Bolduc, Trevor G. et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 226260-01-1

3-Fluoro-N-methoxy-N-methylbenzamide (cas: 226260-01-1) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application In Synthesis of 3-Fluoro-N-methoxy-N-methylbenzamide

Thionyl fluoride-mediated one-pot substitutions and reductions of carboxylic acids was written by Bolduc, Trevor G.;Lee, Cayo;Chappell, William P.;Sammis, Glenn M.. And the article was included in Journal of Organic Chemistry in 2022.Application In Synthesis of 3-Fluoro-N-methoxy-N-methylbenzamide This article mentions the following:

Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields). In the experiment, the researchers used many compounds, for example, 3-Fluoro-N-methoxy-N-methylbenzamide (cas: 226260-01-1Application In Synthesis of 3-Fluoro-N-methoxy-N-methylbenzamide).

3-Fluoro-N-methoxy-N-methylbenzamide (cas: 226260-01-1) belongs to amides. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Application In Synthesis of 3-Fluoro-N-methoxy-N-methylbenzamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Schneller, Stewart W. et al. published their research in Journal of Heterocyclic Chemistry in 1981 | CAS: 54166-95-9

6-Chloro-2-aminobenzamide (cas: 54166-95-9) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application of 54166-95-9

The synthesis of proximal-benzolumazine, proximal-benzoxanthine, proximal-benzotheophylline and proximal-benzocaffeine was written by Schneller, Stewart W.;Christ, William J.. And the article was included in Journal of Heterocyclic Chemistry in 1981.Application of 54166-95-9 This article mentions the following:

Title compounds I and II (R = R1 = H; R = R1 = Me; R = Me, R1 = H) were prepared by commencing with 2,6-Cl(H2H)C6H3CONH2 and proceeding via a variety of 5,6-disubstituted 2,4(1H,3H)-quinazolinediones. Methylation of II (R = Me, R1 = H) gave III and II (R = R1 = Me) in a ratio of 4:1. In the experiment, the researchers used many compounds, for example, 6-Chloro-2-aminobenzamide (cas: 54166-95-9Application of 54166-95-9).

6-Chloro-2-aminobenzamide (cas: 54166-95-9) belongs to amides. Amides can be viewed as a derivative of a carboxylic acid RC(=O)OH with the hydroxyl group –OH replaced by an amine group −NR′R″; or, equivalently, an acyl (alkanoyl) group RC(=O)− joined to an amine group. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Application of 54166-95-9

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Cao, Jing et al. published their research in Drugs in R&D in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Synthetic Route of C18H17NO5

NLR Family Pyrin Domain Containing 3 Inhibitor Tranilast Attenuates Gestational Diabetes Mellitus in a Genetic Mouse Model was written by Cao, Jing;Peng, Qian. And the article was included in Drugs in R&D in 2022.Synthetic Route of C18H17NO5 This article mentions the following:

This study was designed to explore the protective effects of a clin. available NLR family Pyrin domain-containing receptor 3 (NLRP3) inhibitor, tranilast, in gestational diabetes mellitus (GDM) mice. We used pregnant C57BL/KsJdb/+ (db/+) female mice as GDM mice, then orally administered 20 mg/kg of tranilast or metformin daily for 2 wk. A glucose tolerance test and an insulin resistance test were used to evaluate the severity of diabetes in tranilast/metformin-treated GDM mice. After delivery, newborn mice were counted and weighed to measure their protective role on the reproductive outcome of GDM mice. Next, we determined the expression of NLRP3 and proinflammatory cytokines in the visceral adipose tissue and placenta of GDM mice using western blot and quant. real-time-polymerase chain reaction. Furthermore, we determined the proinflammatory cytokines in the serum using an ELISA. Tranilast significantly ameliorated GDM symptoms, including maternal body weight, hyperglycemia, insulin insufficiency, glucose intolerance and insulin resistance, enlarged litter size, and reduced litter body weight Addnl., tranilast remarkably reduced the elevated expression of NLRP3 and proinflammatory cytokines. Our data clarified the protective role of the NLRP3 inhibitor, tranilast, on GDM by inhibiting the activation of the NLRP3 inflammasome as well as inflammatory responses. The findings mean tranilast might serve as a therapeutic drug to treat GDM. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Synthetic Route of C18H17NO5).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Synthetic Route of C18H17NO5

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Soika, Julia et al. published their research in ACS Catalysis in 2022 | CAS: 192436-83-2

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Electric Literature of C9H10BrNO2

Organophotocatalytic N-O Bond Cleavage of Weinreb Amides: Mechanism-Guided Evolution of a PET to ConPET Platform was written by Soika, Julia;McLaughlin, Calum;Nevesely, Tomas;Daniliuc, Constantin G.;Molloy, John. J.;Gilmour, Ryan. And the article was included in ACS Catalysis in 2022.Electric Literature of C9H10BrNO2 This article mentions the following:

Mechanistically guided reaction development demonstrates the involvement of a photoinduced electron transfer (PET) mechanism, and this has been further advanced to a consecutive photoinduced electron transfer (ConPET) manifold and this has significantly expanded the scope of compatible substrates RC(O)N(CH3)OCH3 (R = 4-cyanomethyl, pyrazin-2-yl, penta-1,3-dien-1-yl, etc.). In the experiment, the researchers used many compounds, for example, 4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2Electric Literature of C9H10BrNO2).

4-Bromo-N-methoxy-N-methylbenzamide (cas: 192436-83-2) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides are not in general accessible by the direct condensation of amines with carboxylic acids for two reasons: first, both components are readily deactivated by a transfer of a proton from the acid to the amine and second, the hydroxy unit on the carbonyl of the acid is a relatively poor leaving group. Nevertheless, the formation of five- and six-membered rings is often surprisingly simple provided that other factors can be brought into play to assist in the condensation.Electric Literature of C9H10BrNO2

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Hu, Shaoyang et al. published their research in Environmental Science & Technology in 2022 | CAS: 10268-06-1

2-(2-Chlorophenyl)acetamide (cas: 10268-06-1) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(2-Chlorophenyl)acetamide

Formation and cytotoxicity of halophenylacetamides: New group of nitrogenous aromatic halogenated disinfection byproducts in drinking water was written by Hu, Shaoyang;Kaw, Han Yeong;Zhu, Lizhong;Wang, Wei. And the article was included in Environmental Science & Technology in 2022.Recommanded Product: 2-(2-Chlorophenyl)acetamide This article mentions the following:

Nitrogenous aromatic halogenated disinfection byproducts (DBPs) in drinking water have received considerable attention recently owing to their relatively high toxicity. In this study, a new group of nitrogenous aromatic halogenated disinfection byproducts, halophenylacetamides (HPAcAms), were successfully identified for the first time in both the laboratory experiments and realistic drinking water. The formation mechanism of HPAcAms during chlorination of phenylalanine in the presence of Br and I, occurrence frequencies, and concentrations in authentic drinking water were investigated, and a quant. structure-activity relationship (QSAR) model was developed based on the acquired cytotoxicity data. The results demonstrated that HPAcAms could be formed from phenylalanine in chlorination via electrophilic substitution, decarboxylation, hydrochloric acid elimination, and hydrolysis. The HPAcAm yields from phenylalanine were significantly affected by contact time, pH, chlorine dose, and temperature Nine HPAcAms with concentrations in the range of 0.02-1.54 ng/L were detected in authentic drinking water samples. Most tested HPAcAms showed significantly higher cytotoxicity compared with dichloroacetamide, which is the most abundant aliphatic haloacetamide DBP. The QSAR model demonstrated that the cellular uptake efficiency and the polarized distributions of electrons of HPAcAms play essential roles in their cytotoxicity mechanisms. In the experiment, the researchers used many compounds, for example, 2-(2-Chlorophenyl)acetamide (cas: 10268-06-1Recommanded Product: 2-(2-Chlorophenyl)acetamide).

2-(2-Chlorophenyl)acetamide (cas: 10268-06-1) belongs to amides. Compared to amines, amides are very weak bases and do not have clearly defined acid–base properties in water. On the other hand, amides are much stronger bases than esters, aldehydes, and ketones. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Recommanded Product: 2-(2-Chlorophenyl)acetamide

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Papadopoulos, Athanasios et al. published their research in Journal of Supercritical Fluids in 2013 | CAS: 10543-57-4

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)

A semi-quantitative approach for analyzing low-volatile organic compounds in house dust using an SFE method: Significant common features and particular differences of the extracts was written by Papadopoulos, Athanasios;Vlachogiannis, Diamando;Maggos, Thomas;Sfetsos, Athanasios;Karayiannis, Miltiades I.. And the article was included in Journal of Supercritical Fluids in 2013.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) This article mentions the following:

A number of samples have been collected from various indoor environments located in a semi-rural area in north-western Italy, for extraction with supercritical carbon dioxide (CO2) and anal. of low volatility organic compounds on house dust. The investigation was based on a survey anal. approach aiming at the identification of the organic content of indoor dust. The quantification of the content of the compounds was obtained with a semi-quant. method, incorporating three pre-defined concentration ranges. The classes of compounds, mostly detected in the indoor dust samples analyzed, were fatty acids and some of their esters, n-alkanes, phthalates and alcs. Other less frequently found classes were other esters, phenols, aliphatic aldehydes and ketones. The compounds that were identified in all or in most of the house dust samples appeared predominantly in high concentration ranges while compounds detected scarcely were measured mainly in low concentrations The exptl. study verified that the most important emission sources for the organic compounds detected in the indoor environment were a wide variety of plastic materials and human activities (e.g., cooking). Particular features of some extracts were attributed to specific actions that took place in the house prior or during sampling, and/or to the materials used in the house construction or heating methods. Among the compounds identified as prominent in the house dust samples were the phthalates, of major interest with regard to their impact on human health. In the experiment, the researchers used many compounds, for example, N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)).

N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide) (cas: 10543-57-4) belongs to amides. The solubilities of amides and esters are roughly comparable. Typically amides are less soluble than comparable amines and carboxylic acids since these compounds can both donate and accept hydrogen bonds. Tertiary amides, with the important exception of N,N-dimethylformamide, exhibit low solubility in water. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Name: N,N-(Ethane-1,2-diyl)bis(N-acetylacetamide)

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Shepard, Scott M. et al. published their research in Journal of the American Chemical Society in 2021 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Formula: C13H24N2O

Synthesis of α,δ-Disubstituted Tetraphosphates and Terminally-Functionalized Nucleoside Pentaphosphates was written by Shepard, Scott M.;Kim, Hyehwang;Bang, Qing Xin;Alhokbany, Norah;Cummins, Christopher C.. And the article was included in Journal of the American Chemical Society in 2021.Formula: C13H24N2O This article mentions the following:

The anion [P4O11]2-, employed as its bis(triphenylphosphine)iminium (PPN) salt, is shown herein to be a versatile reagent for nucleophile tetraphosphorylation. Treatment under anhydrous conditions with an alkylamine base and a nucleophile (HNuc1), such as an alc. (neopentanol, cyclohexanol, 4-methylumbelliferone, and Boc-Tyr-OMe), an amine (propargylamine, diethylamine, morpholine, 3,5-dimethylaniline, and isopropylamine), dihydrogen phosphate, phenylphosphonate, azide ion, or methylidene triphenylphosphorane, results in nucleophile substituted tetrametaphosphates ([P4O11Nuc1]3-) as mixed PPN and alkylammonium salts in 59% to 99% yield. Treatment of the resulting functionalized tetrametaphosphates with a second nucleophile (HNuc2), such as hydroxide, a phenol (4-methylumbelliferone), an amine (propargylamine and ethanolamine), fluoride, or a nucleoside monophosphate (uridine monophosphate, deoxyadenosine monophosphate, and adenosine monophosphate), results in ring opening to linear tetraphosphates bearing one nucleophile on each end ([Nuc1(PO3)3PO2Nuc2]4-). When necessary, these linear tetraphosphates are purified by reverse phase or anion exchange HPLC, yielding triethylammonium or ammonium salts in 32% to 92% yield from [PPN]2[P4O11]. Phosphorylation of methylidene triphenylphosphorane as Nuc1 yields a new tetrametaphosphate-based ylide ([Ph3PCHP4O11]3-, 94% yield). Wittig olefination of 2′,3′-O-isopropylidene-5′-deoxy-5′-uridylaldehyde using this ylide results in a 3′-deoxy-3′,4′-didehydronucleotide derivative, isolated as the triethylammonium salt in 54% yield. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7Formula: C13H24N2O).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Amides include many other important biological compounds, as well as many drugs like paracetamol, penicillin and LSD. Low-molecular-weight amides, such as dimethylformamide, are common solvents. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.Formula: C13H24N2O

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics

Ghasemi, Mehran et al. published their research in Synthesis in 2020 | CAS: 2387-23-7

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application In Synthesis of 1,3-Dicyclohexylurea

Palladium/Norbornene Chemistry in the Synthesis of Polycyclic Indolines with Simple Nitrogen Sources was written by Ghasemi, Mehran;Jafarpour, Farnaz;Habibi, Azizollah. And the article was included in Synthesis in 2020.Application In Synthesis of 1,3-Dicyclohexylurea This article mentions the following:

An efficient procedure has been developed to synthesize indoline derivatives, e.g., I, through a palladium-catalyzed Heck reaction/C-H activation/dual amination cascade in one pot. This constitutes the first intermol. catalytic approach to directly access N-alkylindolines with a broad substrate scope in the absence of any ligands. This method highlights the use of readily available amines and ureas as the required nitrogen sources in building up the indoline core. In the experiment, the researchers used many compounds, for example, 1,3-Dicyclohexylurea (cas: 2387-23-7Application In Synthesis of 1,3-Dicyclohexylurea).

1,3-Dicyclohexylurea (cas: 2387-23-7) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. Amides can be recrystallised from large quantities of water, ethanol, ethanol/ether, aqueous ethanol, chloroform/toluene, chloroform or acetic acid. The likely impurities are the parent acids or the alkyl esters from which they have been made. The former can be removed by thorough washing with aqueous ammonia followed by recrystallisation, whereas elimination of the latter is by trituration or recrystallisation from an organic solvent.Application In Synthesis of 1,3-Dicyclohexylurea

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics