The antipsychotic aripiprazole induces peripheral antinociceptive effects through PI3Kγ/NO/cGMP/KATP pathway activation was written by Ferreira, Renata C.;de Almeida, Douglas L.;Duarte, Igor D. G.;Aguiar, Daniele C.;Moreira, Fabricio A.;Romero, Thiago R. L.. And the article was included in European Journal of Pain (Oxford, United Kingdom) in 2022.SDS of cas: 10238-21-8 This article mentions the following:
Aripiprazole is an antipsychotic drug used to treat schizophrenia and bipolar disorder. Recently, its peripheral analgesic component was evaluated, however, the mechanism involved in this effect is not fully established. Therefore, the aim of the study was to obtain pharmacol. evidence for the involvement of the nitric oxide system in the peripheral antinociceptive effect induced by aripiprazole. The hyperalgesia was induced via intraplantar injection of prostaglandin E2 in mice and the nociceptive thresholds were evaluated using the paw pressure test. All drugs were injected locally into the right hind paw. The PI3K inhibitor (AS605240), but not rapamycin (mTOR kinase inhibitor), reversed the peripheral antinociceptive effect induced by Aripiprazole. Antinociception was antagonized by the non-selective inhibitor of the nitric oxide synthase (L-NOarg). The same response was observed using the selective iNOS, but not with the selective nNOS inhibitors. The selective guanylyl cyclase enzyme inhibitor (ODQ) and the non-selective potassium channel blocker tetraethylammonium were able to reverse the antinociceptive effect of aripiprazole. The same was seen using glibenclamide, an ATP-dependent K+ channel blocker. However, calcium-activated potassium channel blockers of small and high conductance, dequalinium chloride and paxilline, resp., did not reverse this effect. The injection of cGMP-specific phosphodiesterase type 5 inhibitor zaprinast, potentiated the antinociceptive effect induced by a low dose of aripiprazole. The results provide evidence that aripiprazole induces peripheral antinociceptive effects via PI3K/NO/cGMP/KATP pathway activation. In the experiment, the researchers used many compounds, for example, 5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8SDS of cas: 10238-21-8).
5-Chloro-N-(4-(N-(cyclohexylcarbamoyl)sulfamoyl)phenethyl)-2-methoxybenzamide (cas: 10238-21-8) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole. The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. As a result of interactions such as these, the water solubility of amides is greater than that of corresponding hydrocarbons. These hydrogen bonds are also have an important role in the secondary structure of proteins.SDS of cas: 10238-21-8
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics