Chien, Pham Ngoc et al. published their research in In Vivo in 2022 | CAS: 53902-12-8

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Category: amides-buliding-blocks

Nanomicelle-generating microneedles loaded with tranilast for treatment of hypertrophic scars in a rabbit model was written by Chien, Pham Ngoc;Jeong, Jae Heon;Nam, Sun Young;Lim, Su Yeon;Van Long, Nguyen;Zhang, Xin Rui;Jeong, Ji Hoon;Heo, Chan Yeong. And the article was included in In Vivo in 2022.Category: amides-buliding-blocks This article mentions the following:

Background/Aim: Hypertrophic scars (HS) are the result of pathol. wound healing characterized by a red, raised scar formation. The goal of this research was development of a new method for treatment of HS formation. Materials and Methods: A tranilast-loaded microneedle (TMN) was developed and applied in a rabbit ear model to treat an induced HS. Scar elevation index, the thickness of dorsal skin by hematoxylin and eosin staining, collagen deposition by Masson trichrome staining and expression of myofibroblast biomarker proteins were evaluated. Results: The 12×12 array of the TMN containing 2.9 μg tranilast per needle released more than 80% of the drug within 30 min. During the procedure, control, non-loaded MN and TMN loaded with three different doses of tranilast (low: 2.5-3, medium: 25-30, and high: 100-150 μg) were applied to the HS in rabbit ears. High-level TMN led to a clear and natural appearance of skin, a decrease in scar elevation index by 47% and decline in the thickness of the epidermis from 69.27 to 15.92 μm when compared to the control group. Moreover, the collagen d. also decreased in groups treated with medium- or high-level TMNs, by 10.2% and 9.06%, resp. Furthermore, the expression of transforming growth factor-β, collagen-1, and α-smooth muscle actin proteins was reduced in TMN-treated HSs compared to the control. Conclusion: The findings show the overall efficacy of TMNs in inhibiting HS. Thus, use of TMN is a simple and cosmetic remedy for HS, with good protection and reliability. In the experiment, the researchers used many compounds, for example, 2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8Category: amides-buliding-blocks).

2-(3-(3,4-Dimethoxyphenyl)acrylamido)benzoic acid (cas: 53902-12-8) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. The presence of the amide group –C(=O)N– is generally easily established, at least in small molecules. It can be distinguished from nitro and cyano groups in IR spectra. Amides exhibit a moderately intense νCO band near 1650 cm−1. By 1H NMR spectroscopy, CONHR signals occur at low fields. In X-ray crystallography, the C(=O)N center together with the three immediately adjacent atoms characteristically define a plane.Category: amides-buliding-blocks

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics