Tanaka, Masayoshi published the artcileAdenosine A2B receptor down-regulates metabotropic glutamate receptor 5 in astrocytes during postnatal development, HPLC of Formula: 264622-53-9, the publication is Glia (2021), 69(11), 2546-2558, database is CAplus and MEDLINE.
Metabotropic glutamate receptor 5 (mGluR5) in astrocytes is a key mol. for controlling synapse remodeling. Although mGluR5 is abundant in neonatal astrocytes, its level is gradually down-regulated during development and is almost absent in the adult. However, in several pathol. conditions, mGluR5 re-emerges in adult astrocytes and contributes to disease pathogenesis by forming uncontrolled synapses. Thus, controlling mGluR5 expression in astrocyte is critical for several diseases, but the mechanism that regulates mGluR5 expression remains unknown. Here, we show that ATP (ATP)/adenosine-mediated signals down-regulate mGluR5 in astrocytes. First, in situ Ca2+ imaging of astrocytes in acute cerebral slices from post-natal day (P)7-P28 mice showed that Ca2+ responses evoked by (S)-3,5-dihydroxyphenylglycine (DHPG), a mGluR5 agonist, decreased during development, whereas those evoked by ATP or its metabolite, adenosine, increased. Second, ATP and adenosine suppressed expression of the mGluR5 gene, Grm5, in cultured astrocytes. Third, the decrease in the DHPG-evoked Ca2+ responses was associated with down-regulation of Grm5. Interestingly, among several adenosine (P1) receptor and ATP (P2) receptor genes, only the adenosine A2B receptor gene, Adora2b, was up-regulated in the course of development. Indeed, we observed that down-regulation of Grm5 was suppressed in Adora2b knockout astrocytes at P14 and in situ Ca2+ imaging from Adora2b knockout mice indicated that the A2B receptor inhibits mGluR5 expression in astrocytes. Furthermore, deletion of A2B receptor increased the number of excitatory synapse in developmental stage. Taken together, the A2B receptor is critical for down-regulation of mGluR5 in astrocytes, which would contribute to terminate excess synaptogenesis during development.
Glia published new progress about 264622-53-9. 264622-53-9 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Adenosine Receptor, name is N-(4-Acetylphenyl)-2-(4-(2,6-dioxo-1,3-dipropyl-2,3,6,9-tetrahydro-1H-purin-8-yl)phenoxy)acetamide, and the molecular formula is C14H31NO2, HPLC of Formula: 264622-53-9.
Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics