Msungu, Selly D.’s team published research in Food Research International in 156 | CAS: 137862-53-4

Food Research International published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Name: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Msungu, Selly D. published the artcileStatus of carotenoids in elite and landrace maize genotypes: Implications for provitamin A biofortification in Tanzania, Name: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, the publication is Food Research International (2022), 111303, database is CAplus and MEDLINE.

Maize is among the crops containing carotenoids that are easily converted to vitamin A and have an enormous influence on consumers health. Principally maize has high calories and proteins but has less number of other micronutrients such as vitamin A. Societies that use maize as their main and sole staple food are likely to be affected by vitamin A deficiency. Thus, development and production of maize varieties rich in micronutrients and vitamin A are important for improved health. This study characterized 5 carotenoid components in maize genotypes grown in Tanzania as a strategy for improving vitamin A content in maize. The study involved maize landraces, com. or elite varieties, and inbred lines in determining their potential for provitamin A breeding programs for nutrition improvement. The study found that mean concentration of important carotenoid components, i.e., alpha carotene (AC), beta-carotene (BC), beta-cryptoxanthin (BCX), lutein (LU), zeaxanthin (ZX), provitamin A (ProVA), non-provitamin A (Non-ProVA), and total carotenoids (TC) varied significantly (P < 0.001) among maize genotypes. The 3 maize groups studied (landraces, com. varieties, and breeding materials (BMs) varied significantly. For maize landraces, the concentration (μg/g) of studied carotenoids were AC (0.13-2.67), BC (0.60-3.72), BCX (0.36-1.01), ProVA (0.89-5.29), Retinol (0.25-0.87), LU (2.37-16.97). ZX (0.16-4.41), Non-ProVA (2.4-19.01), and TC (3.68-25.27); in com. or elite maize varieties were (in μg/g): AC (0.31-3.84), BC (0.56-6.5), BCX (0.46-2.58), ProVA (0.92-11.80), Retinol (0.15-1.82), LU (3.28-22.39). ZX (0.05-11.31), Non-ProVA (2.56-28.81), and TC (4.23-37.84); and for maize BMs AC (0.53-6.64), BC (1.92-13.87), BCX (0.65-6.51), ProVA (2.69-18.62), Retinol (0.5-3.1), LU (4.86-34.99), ZX (0.06-18.58), Non-ProVA (4.8-53.57), and TC (9.86-76.94). Furthermore, the study found that the concentration of studied carotenoids was higher in pigmented (yellow or red) maize genotypes than in white maize genotypes. The current study found an appreciable amount of ProVA in studied materials, including maize landraces, com. yellow varieties, and CIMMYT lines. The concentration of ProVA and retinol determined in studied maize genotypes were below 15 μg/g a daily vitamin A requirement, thus based on the current ProVA and retinol status it is difficult to meet Vitamin A requirement. Therefore, these maize genotypes with promising levels of carotenoid components are potential breeding materials that can be used in maize provitamin A biofortification program for improved food nutrition and livelihoods in Tanzania.

Food Research International published new progress about 137862-53-4. 137862-53-4 belongs to amides-buliding-blocks, auxiliary class GPCR/G Protein,Angiotensin Receptor, name is (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid, and the molecular formula is C24H29N5O3, Name: (S)-2-(N-((2′-(1H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)pentanamido)-3-methylbutanoic acid.

Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics