Gupta, Pankaj published the artcileRecognition of Double-Stranded RNA by Guanidine-Modified Peptide Nucleic Acids, Related Products of amides-buliding-blocks, the publication is Biochemistry (2012), 51(1), 63-73, database is CAplus and MEDLINE.
Double-helical RNA has become an attractive target for mol. recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the mol. recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biol. relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from
Biochemistry published new progress about 186046-83-3. 186046-83-3 belongs to amides-buliding-blocks, auxiliary class Purine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(2-(((benzhydryloxy)carbonyl)amino)-6-oxo-5H-purin-9(6H)-yl)acetamido)acetic acid, and the molecular formula is C40H35N7O8, Related Products of amides-buliding-blocks.
Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics