Hu, Liming published the artcileThermophilic pyrrolysyl-tRNA synthetase mutants for enhanced mammalian genetic code expansion, Quality Control of 2418-95-3, the publication is ACS Synthetic Biology (2020), 9(10), 2723-2736, database is CAplus and MEDLINE.
Genetic code expansion (GCE) is a powerful technique for site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in living cells, which is achieved through evolved aminoacyl-tRNA synthetase mutants. Stability is important for promoting enzyme evolution, and we found that many of the evolved synthetase mutants have reduced thermostabilities. In this study, we characterized two novel pyrrolysyl-tRNA synthetases (PylRSs) derived from thermophilic archaea: Methanosarcina thermophila (Mt) and Methanosarcina flavescens (Mf). Further study demonstrated that the wild-type PylRSs and several mutants were orthogonal and active in both Escherichia coli and mammalian cells and could thus be used for GCE. Compared with the commonly used M. barkeri PylRS, the wild-type thermophilic PylRSs displayed reduced GCE efficiency; however, some of the mutants, as well as some chimeras, outperformed their mesophilic counterparts in mammalian cell culture at 37°C. Their better performance could at least partially be attributed to the fact that these thermophilic synthetases exhibit a threshold of enhanced stability against destabilizing mutations to accommodate structurally diverse substrate analogs. These were indicated by the higher melting temperatures (by 3-6°C) and the higher expression levels that were typically observed for the MtPylRS and MfPylRS mutants relative to the Mb equivalent Using histone H3 as an example, we demonstrated that one of the thermophilic synthetase mutants promoted the incorporation of multiple acetyl-lysine residues in mammalian cells. The enzymes developed in this study add to the PylRS toolbox and provide potentially better scaffolds for PylRS engineering and evolution, which will be necessary to meet the increasing demands for expanded substrate repertoire with better efficiency and specificity in mammalian systems.
ACS Synthetic Biology published new progress about 2418-95-3. 2418-95-3 belongs to amides-buliding-blocks, auxiliary class Chiral,Carboxylic acid,Amine,Aliphatic hydrocarbon chain,Ester,Amino acide derivatives, name is H-Lys(Boc)-OH, and the molecular formula is C11H22N2O4, Quality Control of 2418-95-3.
Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics