Husken, Nina published the artcile“Four-Potential” Ferrocene Labeling of PNA Oligomers via Click Chemistry, Category: amides-buliding-blocks, the publication is Bioconjugate Chemistry (2009), 20(8), 1578-1586, database is CAplus and MEDLINE.
The scope of the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (CuAAC, click chem.) as a key reaction for the conjugation of ferrocene derivatives to N-terminal functionalized PNA oligomers is explored herein (PNA: peptide nucleic acid). The facile solid-phase synthesis of N-terminal azide or alkyne-functionalized PNA oligomer precursors and their cycloaddition with azidoferrocene, ethynylferrocene, and N-(3-ethylpent-1-yn-3-yl)ferrocene-carboxamide (DEPA-ferrocene) on the solid phase are presented. While the click reaction with azidomethylferrocene worked equally well, the ferrocenylmethyl group is lost from the conjugate upon acid cleavage. However, the desired product was obtained via a post-SPPS conversion of the alkyne-PNA oligomer with azidomethylferrocene in solution The synthesis of all ferrocene-PNA conjugates (trimer t3-PNA, 3, 4, 5, 6; 12mer PNA, 10 – t c t a c a a g a c t c, 11 – t c t a c c g t a c t c) succeeded with excellent yields and purities, as determined by mass spectrometry and HPLC. Electrochem. studies of the trimer Fc-PNA conjugates 3, 4, 5, and 6 with four different ferrocene moieties revealed quasi-reversible redox processes of the ferrocenyl redox couple Fc0/+ and electrochem. half-wave potentials in a range of E1/2 = -20 mV to +270 mV vs FcH0/+ (Fc: ferrocenyl, C10H9Fe). The observed potential differences ΔE1/2min are always greater than 60 mV for any given pair of Fc-PNA conjugates, thus allowing a reliable differentiation with sensitive electrochem. methods like e.g. square wave voltammetry (SWV). This is the electrochem. equivalent of “four-color” detection and is hence denoted “four-potential” labeling. Preparation and electrochem. investigation of the set of four structurally different and electrochem. distinguishable ferrocenyl groups conjugated to PNA oligomers, as exemplified by the conjugates 3, 4, 5, and 6, demonstrates the scope of the azide/alkyne cycloaddition for the labeling of PNA with electrochem. active ferrocenyl groups. Furthermore, it provides a PNA-based system for the electrochem. detection of single-nucleotide polymorphism (SNP) in DNA/RNA.
Bioconjugate Chemistry published new progress about 186046-83-3. 186046-83-3 belongs to amides-buliding-blocks, auxiliary class Purine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(2-(((benzhydryloxy)carbonyl)amino)-6-oxo-5H-purin-9(6H)-yl)acetamido)acetic acid, and the molecular formula is C40H35N7O8, Category: amides-buliding-blocks.
Referemce:
https://en.wikipedia.org/wiki/Amide,
Amide – an overview | ScienceDirect Topics