HIV-1 Reverse Transcriptase Inhibition by Major Compounds in a Kenyan Multi-Herbal Composition (CareVid): In Vitro and In Silico Contrast was written by Rotich, Winnie;Sadgrove, Nicholas J.;Mas-Claret, Eduard;Padilla-Gonzalez, Guillermo F.;Guantai, Anastasia;Langat, Moses K.. And the article was included in Pharmaceuticals in 2021.Formula: C14H25NO The following contents are mentioned in the article:
CareVid is a multi-herbal product used in southwest Kenya as an immune booster and health tonic and has been anecdotally described as improving the condition of HIV-pos. patients. The product is made up of roots, barks and whole plant of 14 African medicinal plants: Acacia nilotica (L.) Willd. ex Delile (currently, Vachelia nilotica (L.) P.J.H Hurter & Mabb.), Adenia gummifera (Harv.) Harms, Anthocleista grandiflora Gilg, Asparagus africanus Lam., Bersama abyssinica Fresen., Clematis hirsuta Guill. & Perr., Croton macrostachyus Hochst. ex Delile, Clutia robusta Pax (accepted as Clutia kilimandscharica Engl.), Dovyalis abyssinica (A. Rich.) Warb, Ekebergia capensis Sparm., Periploca linearifolia Qt.-Dill. & A. Rich., Plantago palmata Hook.f., Prunus africana Hook.f. Kalkman and Rhamnus prinoides L′Her. The objective of this study was to determine the major chem. constituents of CareVid solvent extracts and screen them for in vitro and in silico activity against the HIV-1 reverse transcriptase enzyme. To achieve this, CareVid was sep. extracted using CH2Cl2, MeOH, 80% EtOH in H2O, cold H2O, hot H2O and acidified H2O (pH 1.5-3.5). The extracts were analyzed using HPLC-MS equipped with UV diode array detection. HIV-1 reverse transcriptase inhibition was performed in vitro and compared to in silico HIV-1 reverse transcriptase inhibition, with the latter carried out using MOE software, placing the docking on the hydrophobic pocket in the subdomain of p66, the NNRTI pocket. The MeOH and 80% EtOH extracts showed strong in vitro HIV-1 reverse transcriptase inhibition, with an EC50 of 7 μg·mL-1. The major components were identified as sucrose, citric acid, ellagic acid, catechin 3-hexoside, epicatechin 3-hexoside, procyanidin B, hesperetin O-rutinoside, pellitorine, mangiferin, isomangiferin, 4-O-coumaroulquinic acid, ellagic acid, ellagic acid O-pentoside, crotepoxide, oleuropein, magnoflorine, tremulacin and an isomer of dammarane tetrol. Ellagic acid and procyanidin B inhibited the HIV-1 reverse transcription process at 15 and 3.2 μg/mL-1, resp. Docking studies did not agree with in vitro results because the best scoring ligand was crotepoxide (ΔG = -8.55 kcal/mol), followed by magnoflorine (ΔG = -8.39 kcal/mol). This study showed that CareVid has contrasting in vitro and in silico activity against HIV-1 reverse transcriptase. However, the strongest in vitro inhibitors were ellagic acid and procyanidin B. This study involved multiple reactions and reactants, such as (2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7Formula: C14H25NO).
(2E,4E)-N-Isobutyldeca-2,4-dienamide (cas: 18836-52-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. In simple aromatic amides, fragmentation occurs on both sides of the carbonyl group. If a hydrogen is available in N-substituted aromatic amides, it tends to migrate and form an aromatic amine and the loss of a ketene.Formula: C14H25NO
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics