Jeje, Olamide et al. published their research in International Journal of Molecular Sciences in 2022 | CAS: 1094-61-7

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 1094-61-7

Effect of Divalent Metal Ion on the Structure, Stability and Function of Klebsiella pneumoniae Nicotinate-Nucleotide Adenylyltransferase: Empirical and Computational Studies was written by Jeje, Olamide;Maake, Reabetswe;van Deventer, Ruan;Esau, Veruschka;Iwuchukwu, Emmanuel Amarachi;Meyer, Vanessa;Khoza, Thandeka;Achilonu, Ikechukwu. And the article was included in International Journal of Molecular Sciences in 2022.Product Details of 1094-61-7 The following contents are mentioned in the article:

The continuous threat of drug-resistant Klebsiella pneumoniae justifies identifying novel targets and developing effective antibacterial agents. A potential target is nicotinate nucleotide adenylyltransferase (NNAT), an indispensable enzyme in the biosynthesis of the cell-dependent metabolite, NAD+. NNAT catalyzes the adenylation of nicotinamide/nicotinate mononucleotide (NMN/NaMN), using ATP to form nicotinamide/nicotinate adenine dinucleotide (NAD+/NaAD). In addition, it employs divalent cations for co-substrate binding and catalysis and has a preference for different divalent cations. Here, the biophys. structure of NNAT from K. pneumoniae (KpNNAT) and the impact of divalent cations on its activity, conformational stability and substrate-binding are described using exptl. and computational approaches. The exptl. study was executed using an enzyme-coupled assay, far-UV CD, extrinsic fluorescence spectroscopy, and thermal shift assays, alongside homol. modeling, mol. docking, and mol. dynamic simulation. The structure of KpNNAT revealed a predominately α-helical secondary structure content and a binding site that is partially hydrophobic. Its substrates ATP and NMN share the same binding pocket with similar affinity and exhibit an energetically favorable binding. KpNNAT showed maximum activity and minimal conformational changes with Mg2+ as a cofactor compared to Zn2+, Cu2+ and Ni2+. Overall, ATP binding affects KpNNAT dynamics, and the dynamics of ATP binding depend on the presence and type of divalent cation. The data obtained from this study would serve as a basis for further evaluation towards designing structure-based inhibitors with therapeutic potential. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7Product Details of 1094-61-7).

((2R,3S,4R,5R)-5-(3-Carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen phosphate (cas: 1094-61-7) belongs to amides. Amides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis. Amides can be freed from solvent or water by drying below their melting points. These purifications can also be used for sulfonamides and acid hydrazides.Product Details of 1094-61-7

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics