Otlyotov, Arseniy A. published the artcileConformational energies of microsolvated Na+ clusters with protic and aprotic solvents from GFNn-xTB methods, Synthetic Route of 123-39-7, the main research area is sodium methanol water cluster conformational potential correlation function; cluster-continuum theory; conformational analysis; microsolvation; semiempirical methods; sodium cation clusters.
Performance of contemporary tight-binding semiempirical GFNn-xTB methods for the conformational energies of singly charged sodium clusters Na+(S)n (n = 4-8) with 3 protic and 8 aprotic solvents is examined against the reference RI-MP2/CBS method. The median Pearson correlation coefficients of ρ = 0.84 (GFN2-xTB) and ρ = 0.82 (GFN1-xTB) do not give the clear preference to any tested approach. GFN1-xTB method demonstrates more stable performance than its GFN2-xTB successor with the average mean absolute errors (MAEs)/mean signed errors (MSEs) of 1.2/0.2 and 2.3/1.6 kcal mol-1, resp. Conformational energies produced by the computationally efficient DFT functional PBE and double-ζ basis set complemented with -D3(BJ) dispersion correction are suitable for the preliminary sampling (median ρ = 0.93), but should be used with a caution for the calculations of the average ensemble properties (MAE/MSE = 1.7/1.1 kcal mol-1). Higher-ranking PBE0-D3(BJ) and ωB97M-V with triple-ζ basis sets yield significantly lower MAEs/MSEs of 0.55/0.20 and 0.51/0.23 kcal mol-1, resp.
Journal of Computational Chemistry published new progress about Clusters. 123-39-7 belongs to class amides-buliding-blocks, name is N-Methylformamide, and the molecular formula is C2H5NO, Synthetic Route of 123-39-7.
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics