O’Donovan, Megan E.’s team published research in Journal of Molecular Structure in 2015 | CAS: 64479-78-3

N-(Pyridin-4-yl)isonicotinamide(cas: 64479-78-3) belongs to amides.Safety of N-(Pyridin-4-yl)isonicotinamideAmides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis.

Safety of N-(Pyridin-4-yl)isonicotinamideOn March 5, 2015, O’Donovan, Megan E.; LaDuca, Robert L. published an article in Journal of Molecular Structure. The article was 《Zinc coordination polymers containing substituted isophthalate ligands and fragments from in situ hydrolysis of 4-pyridylisonicotinamide》. The article mentions the following:

Hydrothermal treatment of Zn nitrate, a 5-substituted isophthalic acid, and 4-pyridylisonicotinamide (4-pina) resulted in crystalline coordination polymers that incorporated different fragments formed by in situ hydrolysis of the 4-pina precursor. These materials were characterized by single crystal x-ray diffraction. In the case of {[4-ampyrH]2[Zn(hip)2]·H2O}n (1, 4-ampyrH = 4-aminopyridinium, hip = 5-hydroxyisophthalate), anionic [Zn(hip)2]n2n- (4,4) grid layers co-crystallize with protonated 4-ampyr cations. Using 5-nitroisophthalic acid (H2nip), [Zn7(isonic)4(OH)6(nip)2]n (2, isonic = isonicotinate) was formed. This material manifests [Zn7(OH)6]n cationic inorganic chain motifs linked by isonic and nip ligands into a noninterpenetrated 3-dimensional coordination polymer network with pcu topol. Luminescent behavior is attributed to intra-ligand MO transitions. The results came from multiple reactions, including the reaction of N-(Pyridin-4-yl)isonicotinamide(cas: 64479-78-3Safety of N-(Pyridin-4-yl)isonicotinamide)

N-(Pyridin-4-yl)isonicotinamide(cas: 64479-78-3) belongs to amides.Safety of N-(Pyridin-4-yl)isonicotinamideAmides are pervasive in nature and technology. Proteins and important plastics like Nylons, Aramid, Twaron, and Kevlar are polymers whose units are connected by amide groups (polyamides); these linkages are easily formed, confer structural rigidity, and resist hydrolysis.

Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics