The author of 《Synthesis and characterization of divalent metal complexes with bipyridylamide ligands》 were McMoran, Ethan P.; Mugenzi, Clement; Fournier, Kyle; Draganjac, Mark; Tony, Donavon; Jeong, Kwangkook; Powell, Douglas R.; Yang, Lei. And the article was published in Journal of Coordination Chemistry in 2016. Quality Control of N-(Pyridin-4-yl)isonicotinamide The author mentioned the following in the article:
Reaction of N-(4-pyridyl)picolinamide (4-ppa), N-(4-pyridyl)nicotinamide (4-pna), N-(4-pyridyl)isonicotinamide (4-pina), and N-(2-pyridyl)isonicotinamide (2-pina) with divalent metal salts gave six new coordination complexes. The x-ray structure of [Zn(4-ppa)2Cl2] (1) shows a mononuclear structure with interesting intermol. hydrogen bonding interactions. [Zn(4-pna)(OAc)2]n (2), [Cu(4-pna)(OTf)2(DMF)2]n.DMF (3), {[Zn(4-pina)(DMF)4](OTf)2}n (4), {[Fe(4-pina)(DMF)4](OTf)2}n (5), and [Cu(2-pina)(OTf)2(DMF)2]n.2DMF (6) are one-dimensional coordination polymers with conformational differences caused by the coordination donor disposition, which demonstrates the flexibility of the pyridylamide ligands in polymeric structures. Reflectance UV-visible spectra and thermal properties of the coordination polymers are also reported.N-(Pyridin-4-yl)isonicotinamide(cas: 64479-78-3Quality Control of N-(Pyridin-4-yl)isonicotinamide) was used in this study.
N-(Pyridin-4-yl)isonicotinamide(cas: 64479-78-3) belongs to amides. Because of the greater electronegativity of oxygen, the carbonyl (C=O) is a stronger dipole than the N–C dipole.Quality Control of N-(Pyridin-4-yl)isonicotinamide The presence of a C=O dipole and, to a lesser extent a N–C dipole, allows amides to act as H-bond acceptors. In primary and secondary amides, the presence of N–H dipoles allows amides to function as H-bond donors as well.
Referemce:
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics