Simple exploration of Urea

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 57-13-6, in my other articles. Product Details of 57-13-6.

Chemistry is an experimental science, Product Details of 57-13-6, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 57-13-6, Name is Urea, molecular formula is CH4N2O, belongs to amides-buliding-blocks compound. In a document, author is Hanashima, Shinya.

Aims: Bacterial pathogens such as Pseudomonas aeruginosa and Burkholderia pseudomallei are intrinsically resistant to many classes of antibiotics. This is not only due to the poor permeability of their outer membrane but also because of expression of multiple efflux pumps. A promising strategy to minimize the efflux of drugs by these pumps is the use of efflux pump inhibitors (EPIs). In this study, the potential of caffeic acid derivatives as EPIs in P. aeruginosa and B. pseudomallei were evaluated. Methodology and results: The potential of caffeic acid and its derivatives, i.e. chlorogenic acid, caffeic acid phenethyl ester (CAPE) and caffeic acid phenethyl amide (CAPA) to act as EPIs in P. aeruginosa and B. pseudomallei were assessed using the ethidium bromide (EtBr) accumulation and minimum inhibitory concentration (MIC) validation assays. Among the four test compounds, CAPE was found to significantly increased intracellular accumulation of EtBr in both P. aeruginosa and B. pseudomallei. An increase of 21.4% and 16.8% in cell fluorescence, over a 5-min time frame was observed in P. aeruginosa and B. pseudomallei respectively. Combination of CAPE with kanamycin significantly reduced MICs of this aminoglycoside by a factor of 8-fold in P. aeruginosa and 2-fold in B. pseudomallei. Combination of CAPE with gentamicin also led to a reduction of 4-fold MIC value of this antibiotic in B. pseudomallei. Conclusion, significance and impact of study: The in-vitro results suggest that CAPE has the potential to act as an EPI in P. aeruginosa and B. pseudomallei, thus improving the efficacy of aminoglycosides as antimicrobial agents.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 57-13-6, in my other articles. Product Details of 57-13-6.

Reference:
Amide – Wikipedia,
,Amide – an overview | ScienceDirect Topics