Simple exploration of C4H9NO2

If you are hungry for even more, make sure to check my other article about 600-21-5, COA of Formula: https://www.ambeed.com/products/600-21-5.html.

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time. 600-21-5, Name is H-N-Me-DL-Ala-OH, formurla is C4H9NO2. In a document, author is Mukhopadhyay, Dwaipayan, introducing its new discovery. COA of Formula: https://www.ambeed.com/products/600-21-5.html.

PurposeChemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected CEST (DISC-CEST) analysis for simplified decoupling and quantification of in vivo CEST effects. MethodsCEST MRI and relaxation measurements were carried out on a classical 2-pool creatine-gel CEST phantom and normal rat brains (N=6) and a rat model of glioma (N=8) at 4.7T. The proposed DISC-CEST quantification was carried out and compared with conventional MTRasym and the original three-offset method. ResultsWe demonstrated that the DISC-CEST contrast in the phantom had much stronger correlation with MTRasym than the three-offset method, which showed substantial underestimation. In normal rat brains, the DISC-CEST approach revealed significantly stronger APT effect in gray matter and higher NOE effect in white matter. Furthermore, the APT and NOE maps derived from DISC-CEST showed significantly higher APT effect in the tumors than contralateral normal tissue but no apparent difference in NOE. ConclusionThe proposed DISC-CEST method, by correction of nonlinear direct water saturation effect, serves as a promising alternative to both the commonly used MTRasym and the simplistic three-offset analyses. It provides simple yet reliable in vivo CEST quantification such as APT and NOE mapping in brain tumor, which is promising for clinical translation. Magn Reson Med 78:2307-2314, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.

If you are hungry for even more, make sure to check my other article about 600-21-5, COA of Formula: https://www.ambeed.com/products/600-21-5.html.

Reference:
Amide – Wikipedia,
,Amide – an overview | ScienceDirect Topics