Extended knowledge of 3984-14-3

According to the analysis of related databases, 3984-14-3, the application of this compound in the production field has become more and more popular.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 3984-14-3, name is N,N-Dimethylsulfamide, This compound has unique chemical properties. The synthetic route is as follows., category: amides-buliding-blocks

1H-Indole-6-carboxamide, 2-bromo-3-cyclohexyl-N-[(dimethylamino)sulfonyl]-. 1,1?-Carbonyldiimidazole (1.17 g, 7.2 mmol) was added to a stirred solution of 2-bromo-3-cyclohexyl-1H-indole-6-carboxylic acid (2.03 g, 6.3 mmol) in THF (6 mL) at 22 C. The evolution of CO2 was instantaneous and when it slowed the solution was heated at 50 C. for 1 hr and then cooled to 22 C. N,N-Dimethylsulfamide (0.94 g, 7.56 mmol) was added followed by the dropwise addition of a solution of DBU (1.34 g, 8.8 mmol) in THF (4 mL). Stirring was continued for 24 hr. The mixture was partitioned between ethyl acetate and dilute HCl. The ethyl acetate layer was washed with water followed by brine and dried over Na2SO4. The extract was concentrated to dryness to leave the title product as a pale yellow friable foam, (2.0 g, 74%, >90% purity, estimated from NMR). 1H NMR (300 MHz, DMSO-D6) ? ppm 1.28-1.49 (m, 3 H) 1.59-2.04 (m, 7 H) 2.74-2.82 (m, 1 H) 2.88 (s, 6 H) 7.57 (dd, J=8.42, 1.46 Hz, 1 H) 7.74 (d, J=8.78 Hz, 1 H) 7.91 (s, 1 H) 11.71 (s, 1 H) 12.08 (s, 1 H).An alternative method for the preparation of 1H-indole-6-carboxamide, 2-bromo-3-cyclohexyl-N-[(dimethylamino)sulfonyl]- is described below. 2-bromo-3-cyclohexyl-1H-indole-6-carboxylic acid (102.0 g, 0.259 mol) and dry THF (300 mL). were added to a 1 L four necked round bottom flask equipped with a mechanical stirrer, a temperature controller, a N2 inlet, and a condenser, and the mixture was placed under N2. After stirring for 10 min, CDI (50.3 g, 0.31 mol) was added portion wise. The reaction mixture was then heated to 50 C. for 2 h. After cooling to 30 C., N,N-dimethylaminosulfonamide (41.7 g, 0.336 mol) was added in one portion followed by addition of DBU (54.1 mL, 0.362 mol) drop wise over a period of 1 h. The reaction mixture was then stirred at rt for 20 h. The solvent was removed in vacuo and the residue was partitioned between EtOAc and 1 N HCl (1:1, 2 L). The organic layer was separated and the aqueous layer was extracted with EtOAc (500 mL). The combined organic layers were washed with brine (1.5 L) and dried over MgSO4. The solution was filtered, and then concentrated in vacuo to give the crude product (111.0 g). The crude product was suspended in EtOAc (400 mL) at 60 C., and heptane (2 L) was then added slowly. The resulting mixture was stirred and cooled to 0 C. It was then filtered. The filter cake was rinsed with a small amount of heptane and house vacuum air dried for 2 days. The product was collected as a white solid (92.0 g, 83%). 1H NMR (MeOD, 300 MHz) ? 7.89 (s, H), 7.77 (d, J=8.4 Hz, 1H), 7.55 (dd, J=8.4 and 1.8 Hz, 1H), 3.01 (s, 6H), 2.73-2.95 (m, 1H), 1.81-2.05 (m, 8H), 1.39-1.50 (m, 2H); m/z 429 (M+H)+.

According to the analysis of related databases, 3984-14-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Bristol-Myers Squibb Company; US2007/275930; (2007); A1;,
Amide – Wikipedia,
Amide – an overview | ScienceDirect Topics